300. Tautomeric Azines. Part II.¹ The Structure of "Malonyl- α aminopyridine" and its Alkylation Products: Mesomeric Betaines with Six-membered Rings.

By A. R. KATRITZKY and A. J. WARING.

"Malonyl-a-aminopyridine" exists predominantly as the mesomeric betaine (IV; R = H). Alkylation in alkaline solution with methyl iodide gives the N-methyl derivative (IV; R = Me); alkylation with propargyl bromide gives the O- and the N-propargyl derivative; the single products previously obtained on alkylation and formulated² as O-derivatives (II; R = OAlk) are mesomeric betaines (IV; R = Alkyl). An unambiguous synthesis of 2-n-propylaminopyridine is described.

TSCHITSCHIBABIN³ formulated the product he obtained from 2-aminopyridine and malonic ester in the dioxo-form (I); this structure was subsequently accepted (cf., e.g., refs. 4

Part I, preceding paper.
 Schulte and Witt, Arch. Pharm., 1958, 291 (63), 298.
 Tschitschibabin, Ber., 1924, 57, 1168.

⁴ Boeckelheide and Figueras, J. Amer. Chem. Soc., 1949, 71, 2587.

and 5) until Snyder and Robison⁶ pointed out that the physical properties of the compound (high m. p., low solubility in non-polar solvents) were a contra-indication. These

authors ⁶ considered structures (II; R = OH) and (III), favouring the former because phosphorus oxychloride gave a chloride (II; R = Cl); but they suggested that the hydroxy-compound might exist in a dimeric hydrogen-bonded form because its infrared spectrum does not show a hydroxyl stretching mode.

The alkylation of this compound, "malonyl-a-aminopyridine," has been studied by Schulte and Witt;² reaction of the potassium derivative with propargyl and but-2-ynyl bromide gave products which were formulated as O-derivatives (II; $R = HCiC CH_2 O$ and Me•C:C·CH₂•O). C-Alkylation was shown by independent synthesis not to have occurred.

It appeared to us that the high melting points $(>200^\circ)$ of the alkylation products could be better explained if they were N-derivatives (IV), and that "malonyl- α -aminopyridine " probably existed itself as the mesomeric betaine (IV; R = H) [anhydro-(2hydroxy-4-oxopyrido[1,2-a]pyrimid-1-inium hydroxide)]. Structure (IV) is stabilised by resonance with a large number of other canonical forms, as are the more familiar 5-ring aromatic mesomeric betaines: 7 these compounds are often termed "mesoionic," but care is necessary in the use of this term.⁸ The present paper records experiments which justify the above speculations.

Structure of Alkylation Products.—2-Chloropyrido[1,2-a]pyrimidin-4-one (II; R = Cl) with sodium methoxide or sodium propoxide gave the corresponding 2-methoxy- or 2-propoxy-derivatives (II; R = OMe or OPr^n): the latter product was different from the propyl derivative obtained by Schulte and Witt² by catalytic reduction of their propargyl derivative. Alkylation of "malonyl- α -aminopyridine" with methyl iodide by Schulte and Witt's method ² gave 42% of the N-methyl derivative (IV; R = Me), as shown by hydrolysis to 2-methylaminopyridine. In our hands reaction of "malonyl-a-aminopyridine" with propargyl bromide in alkaline solution gave two products, of m. p. $156-157^{\circ}$ (5%) and 264° (decomp.) (32%), which were separated because the latter was less soluble in the reaction mixture. These compounds were identified as the Oand the N-propargyl derivative, respectively, by reduction to the corresponding O- and N-propyl derivatives (m. p. 89.5-92° and 204-206°) and by spectral comparisons. Schulte and Witt's "O-propargyl" product of m. p. 245° was thus probably the somewhat impure N-propargyl derivative, and their "O-propyl" hydrogenation product of m. p. $202-203^{\circ}$ was the pure N-propyl compound. Alkylation of "malonyl- α -aminopyridine" with propyl bromide gave a mixture from which some O-propyl derivative was isolated.

Hydrolysis of the N-propyl derivative gave an amine whose picrate (m. p. 148-150°) gave analyses correct for a propylaminopyridine picrate. The ultraviolet spectra of the free amine and the picrate were similar to those of 2-methylaminopyridine and its picrate, and the infrared spectrum of the free amine showed a single peak in the N-H stretching region. The preparations of "2-n-propylaminopyridine" previously recorded had b.p. 145-160°/21 mm. (picrate m. p. 163°) 9 and b. p. 66°/1.5 mm. (picrate, m. p. 148.5-149.5°).10 We prepared authentic 2-n-propylaminopyridine by the action of propylamine

- Katritzky, Chem. and Ind., 1955, 521.

⁵ Lappin, Petersen, and Wheeler, J. Org. Chem., 1950, 15, 377.
⁶ Snyder and Robison, J. Amer. Chem. Soc., 1952, 74, 4910.
⁷ Baker and Ollis, Quart. Rev., 1957, 11, 15.

 ⁹ Slotta and Franke, Ber., 1930, 63, 678.
 ¹⁰ Mihantef and Fedorof, Zhur. obshchei Khim., 1960, 30, 568.

on 2-bromopyridine, and found it to have b. p. $110-111^{\circ}/15$ mm. (picrate, m. p. $149-150\cdot5^{\circ}$). This confirms Mihantef and Fedorof's results ¹⁰ and shows that the product obtained by Slotta and Franke ⁹ was not 2-n-propylaminopyridine.

	Ult	raviolet s	pectra	and pK_a	values (a	it $24^{\circ} \pm 1^{\circ}$).		
	Neutral species "		Conjugate acid				λ for	
Compound " Malonyl-α-amino- pyridine " ^b	$\lambda_{ ext{max.}} \ (ext{m} \mu) \ 230$	10 ⁻³ ε _{max.} 30·4	λ _{max.} (mμ) 217 251	10 ⁻³ ε _{max} 17·65 10·9	. Solvent 20n-	$\mathrm{p}K_{a}$ 0·07 \pm 0·02	determ. (mµ) 230	Gradient * 1·0
	$\begin{array}{c} 252 \\ 312 \end{array}$	${12 \cdot 7} \over {4 \cdot 3}$	$292 \\ 311$	$5.48 \\ 5.63$	H_2SO_4	$7.09 \pm 0.02 \dagger$		
O-Methyl deriv.	$\frac{222\cdot 5}{254}$	$23 \cdot 8$ 12.0	217 247s 252 293	$\begin{array}{c} 22 \cdot 0 \\ 9 \cdot 75 \\ 11 \cdot 2 \\ 5 \cdot 24 \end{array}$	10n- H ₂ SO ₄	1.36 ± 0.06	230	1.0
	325	7.23	313	6.67				
O-Propynyl deriv.	220 253 326	$24.6 \\ 12.5 \\ 7.85$		_				
O-Propyl deriv.	224 254 326	$25 \cdot 8 \\ 11 \cdot 9 \\ 7 \cdot 6$						
N-Methyl deriv.	230 257 322	32·4 12·0 4·75	220 255 293 325	14·2 ° 7·47 5·89 4·09	13·7n- H ₂ SO ₄	0.18 ± 0.07	230	1.0
N-Propynyl deriv.	229 254 317	${f 32\cdot 3\ 13\cdot 6\ 4\cdot 92}$						
N-Propyl deriv.	$231 \\ 256 \\ 320$	32.9 11.4 4.83						-

^a In phosphate buffer (pH 6.99) except "malonyl- α -aminopyridine" which was in 0.01N-H₂SO₄. ^b Slow hydrolysis occurs in both solvents. The values tabulated are for the first spectra run. The pK is calculated from values of ε extrapolated to zero time. ^c Values extrapolated to zero time.

* Gradient of graph of $\log_{10} \left(\frac{\varepsilon_{HA} + -\varepsilon}{\varepsilon - \varepsilon_A} \right)$ against H_0 . For a Hammett base the value should be 1.0.

† Titrimetric (removal of proton).

Ultraviolet spectra of (a) neutral forms and (b) protonated forms of (---) "malonyl- α -aminopyridine" and its (---) O-methyl and (...) N-methyl derivative.

Ultraviolet Spectra.—The spectrum of the neutral species of "malonyl- α -aminopyridine" resembles that of the N-methyl derivative (IV; R = Me) somewhat more than that of the O-methyl derivative (Fig. a and Table), if one takes into account the fact that alkylation usually results in a small bathochromic shift. This suggests that the tautomeric compound exists predominantly as (IV; R = H), but all the spectra are too similar for conclusive deductions. In sulphuric acid the cations from "malonyl- α -aminopyridine" and its *O*-methyl derivatives have similar spectra (Fig. b), indicating that their structures are of type (V). The spectrum of the cation from the *N*-methyl derivative is somewhat different; this compound decomposes rapidly in sulphuric acid and the curve shown was obtained by extrapolation to zero time, which may have occasioned an error; alternatively, some cations of structure (VI) may be formed.

Basicity Measurements.—Since cations of similar structure are formed, basicities (see Table) give a value of ca. 20 for K_T between structures (II; R = OH) and (IV; R = H) in favour of the latter (betaine) structure. N-Alkylation raises the pK of compound (IV; R = H) by ca. 0.1 unit, a reasonable figure.

Infrared Spectra.—" Malonyl- α -aminopyridine" was insufficiently soluble for solution measurements: in Nujol the NH group showed as a broad peak at *ca*. 2700 cm.⁻¹. In the 1500—1600 region absorption was:

" Malonyl-α-aminopyridine "	1690s	1651s	1615s	15 93 s	152 3 m
N-methyl deriv.	1704s	165 3 s	1633m	1565w	15 2 2m
O-methyl deriv.	1712s		1635s	1575m	15 3 7s
Deuterated "malonyl-a-aminopyridine"	1690s		1610s	1560m	1515m

It is difficult to draw reliable structural conclusions from these results. Full spectra of these compounds will be submitted to the D.M.S. collection.

EXPERIMENTAL

M. p.s were determined on a Kofler block.

"Malonyl-α-aminopyridine "³ had m. p. 301-302° (decomp.) (lit.,³ m. p. 295-298°).

2-Methoxypyrido[1,2-a]pyrimidin-4-one (II; R = OMe).—2-Chloropyrido[1,2-a]-pyrimidin-4-one⁶ (6.5 g.) was refluxed with methanolic sodium methoxide [from sodium (0.83 g.) in methanol (30 c.c.)] for ca. 5 min. Sodium chloride was precipitated, followed by silky needles. After 3 hr. at 20°, methanol (100 c.c.) and ether (500 c.c.) were added, the whole was filtered, and the filtrate evaporated at 20 mm. to give the methoxy-derivative (4.93 g., 78%) which separated as off-white needles, m. p. 145—147°, from light petroleum (b. p. 100—120°)(Found: C, 61·3; H, 4·3; N, 16·2. C₉H₈N₂O₂ requires C, 61·3; H, 4·6; N, 15·9%).

The analogous *n-propoxy-compound* (3.2 g., 71%), prepared similarly, formed pale yellow crystals, m. p. 88–91°, from light petroleum (b. p. 60–80°) (Found: C, 64.7; H, 6.2; N, 13.9. $C_{11}H_{12}N_2O_2$ requires C, 64.7; H, 5.9; N, 13.7%).

Anhydro-(1-methyl-2-hydroxy-4-oxopyrido[1,2a]-pyrimid-1-inium Hydroxide).—" Malonyl- α -aminopyridine " (5 g.), methanolic potassium methoxide [from potassium (1·25 g.) and methanol (60 c.c.)], and methyl iodide (2·06 c.c.) were refluxed 7 hr. After cooling, the *betaine* separated as an amorphous yellow solid (3·35 g., 62%), m. p. 247—248° (from methanol), and when sublimed at 225°/10⁻⁴ mm. had m. p. 245—252° (decomp.) (Found: C, 61·0; H, 4·4; N, 15·8. C₉H₈N₂O₂ requires C, 61·3; H, 4·6; N, 15·9%).

This N-methyl-betaine (37.2 mg.) was refluxed for 18 hr. with 6N-hydrochloric acid (1.4 c.c.). After cooling, the solution was basified with 30% aqueous sodium hydroxide and extracted with ether. Evaporation of the ether gave an oil which was treated with picric acid in acetone. Two recrystallisations of the product from water afforded 2-methylaminopyridine picrate (34.6 mg., 50%), m. p. 186—189°; the mixed m. p. with an authentic specimen (of m. p. 187— 190°) was 186.5—190° (lit.,¹¹ m. p. 190°; 2-aminopyridine picrate has m. p. 216—217° ¹²). Infrared spectra (in Nujol) of the two specimens were identical.

Anhydro-(1-prop-2'-ynyl-2-hydroxy-4-oxopyrido[1,2-a]pyrimid-1-inium Hydroxide) and 2-Prop-2'-ynyloxypyrido[1,2-a]pyrimidin-4-one.—" Malonyl- α -aminopyridine" (5 g.), methanolic potassium methoxide [from potassium (1.25 g.) and methanol (60 c.c.)], and prop-2-ynyl bromide (4 g.) were refluxed for 4 hr. After cooling, the dark yellow N-prop-2'-ynyl derivative was filtered off, washed with water, and recrystallised from methanol as hexagonal prisms (1.98 g., 32%), m. p. 264—265° (rapid heating) (Found: C, 65.6; H, 3.7; N, 14.2. C₁₁H₈N₂O₂ requires C, 66.0; H, 4.0; N, 14.0%).

¹¹ Tschitschibabin, Konowalowa, and Konowalowa, Ber., 1921, 54, 814.

¹² Marckwald, Ber., 1894, 27, 1317.

Evaporation of the filtrate to half its volume gave the O-prop-2'-ynyl derivative which was filtered off, washed with cold water, and recrystallised from methanol as off-white needles (0.29 g., 5%), m. p. 156—157° (Found: C, 65·9; H, 4·3; N, 14·2%).

Reduction of the Propynyl Derivatives.—The N-propynyl derivative (0.204 g.) in methanol (40 c.c.), when shaken over palladium-calcium carbonate, absorbed 46 c.c. of hydrogen (calc., 47.7 c.c.). After filtration and evaporation the residue was sublimed at $180^{\circ}/10^{-4}$ mm., giving the N-propyl derivative, m. p. 203.5—206.5° (Found: C, 65.2; H, 5.6; N, 13.8. C₁₁H₁₂N₂O₂ requires C, 64.8; H, 5.8; N, 13.7%).

The N-propyl derivative (50 mg.) was hydrolysed, etc., as described for the N-methyl derivative. The resulting 2-propylaminopyridine picrate, prepared in ethanol and recrystallised from acetone, formed yellow needles, m. p. 148–150° (Found: C, 46·1; H, 4·0; N, 19·2. $C_8H_{12}N_2, C_8H_3N_3O_7$ requires C, 46·0; H, 4·1; N, 19·2%).

Similarly, the O-propynyl derivative (73.2 mg.) in methanol absorbed 16.5 c.c. of hydrogen (calc., 17.5 c.c.), giving the O-propyl derivative, m. p. $89.5-92^{\circ}$, unchanged on admixture with the authentic propoxy-compound.

2-Propoxypyrido[1,2-a]pyrimidin-4-one by Direct Alkylation.—" Malonyl- α -aminopyridine" (5 g.), methanolic potassium methoxide [from potassium (1·25 g.) and methanol (60 c.c.)], and n-propyl bromide (8·1 g.) were refluxed for 8 hr. The solution was evaporated to 20 c.c. and the solid which separated was recrystallised from ethanol (0·66 g., 9·5%). Vacuum-sublimation gave the propoxy-derivative, m. p. 87—92°, with the correct infrared spectrum.

2-n-Propylaminopyridine from 2-Bromopyridine.—2-Bromopyridine ¹³ (5 g.), b. p. 84— 86°/15 mm., and n-propylamine (25 c.c.) were heated for 10 hr. at 210° in a sealed tube. The remaining propylamine was distilled off, water (15 c.c.) added, and the whole extracted with ether (3 × 25 c.c.). After drying (KOH), the oil obtained from the extract was distilled, giving 2-n-propylaminopyridine (3.58 g., 83.6%), b. p. 110—111°/15 mm. (Found: C, 70.3; H, 9.4; N, 20.3. $C_8H_{12}N_2$ requires C, 70.6; H, 8.9; N, 20.6%). The picrate crystallised from ethanol as pale yellow needles, m. p. and mixed m. p. 149—150.5°

UNIVERSITY CHEMICAL LABORATORY, LENSFIELD ROAD, CAMBRIDGE.

[Received, November 13th, 1961.]

¹³ Org. Synth., Coll. Vol. III, p. 136.